B.Sc. (Semester - 5)
Subject: Physics
Classical Mechanics
Course: USO5CPHY21

UNIT-III Variational Principle

Configuration Space:

In the case of motion of a single particle we can represent its trajectory in the three
dimensional space by specifying its variable. For a system of N particles described by 3N
space coordinates with k equations of constraint in the real space. It is difficult to visualize
the motion of the entire system. It is therefore convenient to describe the state of a system
having 3N — k = n coordinates in a hypothetical n — dimensional space. This is an
extension of the three dimensional to the n — dimensional geometry. The state of the
system is then described by a point having generalised coordinates qj, wherei =12, ....n.
The point is called the system point and the n — dimensional space is known as the
configuration space.

At some instant, the state of the system changes and it will be represented by some
other point in the configuration space. Thus, the system point moves in the configuration
space tracing out a curve. This curve represents the path of motion of the entire system. The
motion of the system means the motion of the system point along this path in the
configuration space.

Some Techniques of Calculus of Variation:

The basic problem of calculus of variation is to find a path y =y(x) in one
dimension between x; and x;, such that the line integral of some function v,y %)

dy . : . o
Where y' = ~- Is an extremum. i.e. maximum or minimum.
CLLX

Statement: For a function f(y,y', x), the line integral

J= f FO,y'x) dx - (3.1)

along the path y = y(x) between x, and x, is to be extremum.
Let (x1,y1) and (x5, ¥,) be two points in the space as shown in fig.3.1. There are two
varied paths between two extreme points y(x;) = y, and y(x,) = y,.
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Fig: 3.1
In order to find a path give an extremum value, we associate a parameter a with all
the possible path. Then y will be a function of both the independent variable x and the
parameter «.

~yla,x) =y(0,a) + an(x) - (3.2)
Here, n(x) = — and n(x) is some function of x for which the function itself vanishes
at both x = x, and x = x,.

~ nlxy) = nlx;) = 0 at the extremum.
Now using equation (3.2) in (3.2), we get

J(a) = f flv(a, x),y'(a,x), x] dx R
Then, the condition that J(a) has an extremum value is
W] = 0 3.4
4 .. (3.4)
Differentiate equation (3.3) with respect to a , we get
[ Xz
aj d j i
da _ da [y x) dx
| X1

X2

d] J‘ df dy of dy' Of dx
S = T + dx
da dyda dy' da dxda

X1
cx

The end points are fixed. There is no variation at the end points. Hence, = 0

X2

9 _ J [aféy of 9y’

i i
da

dy da = dy' A
af dy of 0%y
J‘[ﬂyaa dy' da dx e . (3.5)

dx

Integrating the second term in the integrand by parts, we get

m
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df d /0 af o d 1df\0
1 (y)d _9f 9y f ( f) 2 d . (3.6)
dy’ dx \da 0y’ dal dx \dy'/ dua
A1 1 A1
But,
a) dy|™?
Ep = n(x), Hence 3 - =nlx;) —nx;) =0 . (3.7)

Thus, the first term on the R.H.S of equation (3.6) vanishes. Hence, Equation (3.5)
becomes

f [afay af)ay

d
dyda dx 6y 6&:] '

f [ay dx dy’ )] i) dx .(38)

Since n(x) is an arbitrary functmn such that n(x;) = n(x,;) = 0. The integral of
equation (3.8) must vanish for @ = 0, Thus, we have
df d /0f B
dy dx (fiy’) =¥
This equation is called Euler's equation and it represents the necessary condition
that the integral / has the extremum value.

. (3.9)

Euler’s equation can be generalised when f is a function of several dependent
variables.,

=l yi(x).x], i=12,....n . (3.10)
Here, y; (@, x) = ¥;(0,x) + a n;(x) . (3.11)
Hence, Euler’s equation becomes,
af d [Of
- S = () I [
dy; dx (ﬂ}ff) (3:12)

More generally,

f"—“f[}’i(xj)wyf(xj):xf]

Where. i = 1,2, ...:00 nand j'=1,2; o k.
The Euler’s Lagrange’s equation takes the form
of 9 of
z =0 .(3.13)
Iy La0x; (ay,/dx;)

=1

Euler’s equation (3.9) can also be put into another form. Let us consider
df af dy adf ay'

== : 'J =—ra- + s i

fOny',x) = dy 0x * ay" dx

_ df 6}" af L af

. = —+ — . (3.1
dx  Odx yay ydy’ .13)

dx( gj) Y §;+ydx(§;)

Substituting the value ufy frnm equation (3.14) in above equation , we get

Now,

“—_‘_——____
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) - e ()

afy  df 0 af d @
.dx(y f) L 2 . (3.15)

dy dx Ox dy dxady'
Using equation (3.9) in (3.15), we get
d d 9, .
—f—-—(f—y'—f:)z (316]
dy dx ay
This is called the second form of Euler’s equation. When f does not depend upon x
then,
af
— y'— = const. R . 7l
f=Y'3 o (3.17)

The & —Notation:

The results of the calculus of variation are expressed in terms of §- notation as
follows:

We have

J[ﬁy dx ay)]ay *

Multiplying both the sides by da, we get

d] ] .
i - — l =131
da da J‘ l@y dx (dy ) ok ( )
d] dy ,
L A= —da = . (3.19
Taking == da = 6} and == da = 8y (3.19)
af d s0f
. _ o - .. (3.20
] J. [ﬁy dx (@y’)] e ( )

X1

The condition of extremum becomes

0] =0 f f(v,y' ., x)dx =10 (82 %)

Taking & inside the integral, we get

6] = J 0f dx = f léﬁyﬁ-g}{ y] dx i (BB
Now, | " )
5y’ =8(=2) = —(8y)
Hence,
0] = J’[Si y+%£(§y}] dx A D)

1

T - — e e e e e e e e
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Integrating second term by parts, we get

X2 _ X2
af d af % d /of
EFE((EJ}’) ax = ‘W E =y (d}’*) 5}’ dx
X Xy
But, 8y|3? =
X5 A2
df d d (0f
S N o o ( ) d . (3.24
f?)y'fix( y)ax fdx ay’ oy e hictt)
Xy X
Substituting this equation (3.24) in equation (3.23), we get
f  d of
= ‘- ik 2 n
% J!@y dx (ay*)] oy da \9:4)
X1 :

Using the condition of variation, we get
d/ =0
This gives the Euler’s equation in § - notation.

Applications of The Variational Principle:

1. Toshow that the shortest distance between two points in a plane is a straight line.
Consider the XY —plane. The length of the element is given by
ds® = dx® + dy?
wds =\ dx? + dy?
541/2

1+(2)] (326)

The coordinates at the ends points are (x;, v;) and (x5, y,)

&.08 = dx

v X d 5 1/2
nfi= fds - f [1 + (_y) ‘ ax o (Tl )
dx
1 X3

The condition for shortest path is that the integral / should be minimum.
Comparing this equation with variational principle, we obtain

f=J1+y’E ..(3.28)
Where, y' = z—i, Now
9, d 1 '
ﬂ}/ a:}-’ 2 ré
2|14y 14y
The Euler’s equation is
af d (5f) -
dy dx\dy’
d r
Y — 0
ax 5
\/1 +y'

R ————————S———
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Jl-b—y’z

s % =P y) = (4 %"
. y.-?(l ~(C?) = C2
[l F_-.- C
d V1 —C?

= const.C

= qa,const

Integrating above equation, we get
y=ax+b .. (3.29)
This is the equation of straight line.

2. The Brachistochrone OR shortest time problem:

We consider a particle which moves in a constant conservative force-field F as shown in
Fig.(3.2). Suppose that the particle is initially at rest at some point and moves to some other
point (x;, ¥,) under the action of the force.

O —— » Y
'

L ::" )
v
X

Fig: 3.2
Let v be the speed of the particle along the curve, the time of travelling is given by
2
ds
t1p = T i)

1
If the frictional force is ignored, the total energy of the particle is

T +V = const.

Now,

1
T Emvz and V = —mgx

From the conservation principle for the energy of the particle we find
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V= 20X vk 331, )

2 X1
y ds (1 +y’z)
tirn = | —= dx sl D)
v 20x
1 0
Ly
tio =f [ dx
0
Where,
‘ 1+ y’z .

Factor (2g) ™'/ does not affect the final equation.
The Euler’s-Lagrange’s equation of motion is

af d /9f
dy  dx (ayf) = i524)

Here,

ﬂ_.

a f
=0 and f— 4
dy

0y \/x(l +y'2)

d /df -
dx(é‘y’)_h

..(3.35)

Using relation (3.35) in (3.34), we have

( y'

-‘i- d .
* Jx(l +y'?)

/e

=0

= — here 2a is ¢ :
x(1+y’2) a where 2a 1s const

L2ay't =x ¢t xy’z
ay?a—-x)=x
- Ax

- V2a — x

Vx
Sy = f\{zﬂ = dx ....(3.36)

To solve above equation, we substitute
x =a(l—cos8f) (337 )
¥

/

o

Ldx =a sinf df and J =tanb/2

20— X
. we get,

yzja(l—cusﬂ) 7,

e —
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~y = a(f —sin@) + const - (3.38)
At origin, whenx =y =0, 8 = () then, const = ()
Thus, we have the equations as
x= a(l—cos#h)
. ¥ = a(@ - sin 9)]
These are the equations of a cycloid passing through the origin. Thus, the path of the
particle is a cycloid as shown in Fig.(3.3)

..(3.39)

_.rmli ; Y

Fig: 3.3
The value of constant @ must be adjusted such that the particle passes through the
other points (x,, y,). Along this path, the time of transit of the particle from the origin to
(x1,¥1) is found to be a minimum.

3. Show that the geodesics of a spherical surface are great circles, i.e. the circles
whose centers lie at the centre of the sphere.
A geodesic is a line which represents the shortest path between any two points, when
the path is restricted to be on some surface. The surface is a spherical surface.
The element of distance ds on the surface of a sphere of radius r , in the spherical
coordinates is given by
ds? = r2[dg? + sin26 do?|
nds = r[do* + sin?6 dg?)1/? . (3.40)
The total distance between two points having coordinates (ry, 6,,9,) and
(ry,65,0,) is given by
2 6 - - 9= 1/2
= f ds = f r [1 + 5;?139(—) ] déd . (3.41)
de
1 4,
Here, functional f is given by

d a1/2
=P [1 + sin%6 (£) J . (3.42)

It ] is to be extremum, we must have
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9, d /0
of _ ( f) ~ 0 . (3.43)
a0 de \dp’
s 0 e B
Where, @' = = Since, 30
The Euler-Lagrange’s equation becomes
a /0
(557) =
dg \dQ'
drd _ 1/2
. LTI 12 o
. EEH[@G’{r(l-l_Mn H Q') }] =0
d 11 . 1/2 .
o N . ¥ . e ’ -
. dQ[2(1+Sm 60'")" sin E:'ZGJ] 0
o d sin?6 @' i
a6 (1 + sin%6 @’E)UE#
Since r # 0 and is constant.
Integration of above equation gives,
sin“@ @' )
2 1},.’2 — £ bae (.‘3‘1“1)
(1 + sin26 0'%)
Where ¢ is constant. Above equation becomes
sin*0 @'* = c2(1 + sin?0 9'%)
0'%sin20(sin%@ — c?) = ¢?
, C c cosec?0
0 = = .. (3.45)

©sinf (sin%@ — c)Y2 (1 = ¢2 — c2cot?h)1/2
Using standard integral, we get
@ =a—sin " (kcotd) .. (3.46)
- c
Where, @ and k = 77— are contants.

This gives
k cotl = sin(a — @)
Or k cosf = sin(« — @) sinf .. (3.47)
Using relation between the Cartesian coordinates (x,vy,z) and the spherical polar
coordinates (7, 8, @), we can write above relation as

zk = x sina — y cosa .. (3.48)

where, x?+ y%+ 2?2 =r?

Equation (3.48) represents a plane passing through the origin and hence cutting the
surface of the sphere in a great circle. Thus, the extremum value of the distance between
the two points on the surface of a sphere is an arc of a circle whose centre lies at the centre
of the sphere.

Hamilton’s Principle:

Statement: All the possible paths along which a dynamical systemm may move from
one point to another within a given interval of time, the actual path followed is that which
minimizes the time interval of the Lagrangian.

This principle can also be stated as:

e e e e e T e e e e e e e o PN Wt B ==— o oo g e @ o— e . §
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The motion of the system from instant t, to instant t; is such that the line integral
ta
] = j L dt ..(3.49)
{y
Where, L = T =V, is an extremum for the path of the motion.
In terms of the calculus of variation, we can state Hamilton’s principle as,

5] =6 J' L dt = .. (3.50)

with variation zero at t = t; and t = t,.The line integral of L is an extremum.
Lagrangian L can be expressed as,
L= L@y s v esriems B Gz, Qi i o555 G, t) .. (3.51)

Therefore, equation (3.50) becomes
tz

0] =0 f LGy, Gz oo vor oo Gois iy 5500 v s b)) GE = (0
C1
tz
5 8] = 5j L(q,dit) dt =0 . (352)
tq

The Euler’s equation of motion is
d d [0
—f— = f, =0 where,i = 1,2,...n
dy; dx\dy,

Using above equation the Lagrange’s equation of motion becomes

oL d (0L
(57) ="

dq; dt\dg
o d (HL) aL ; (3.53)
T dt\dg,) 0q, g

This is Lagrange’s equation of motion.
In terms of Lagrangian L , Hamilton’s principle can be stated as:

All the possible path, along which dynamical system may move from one point to
another in the configuration space within a given interval of time, the actual path followed is
that for which the time interval of the Lagrangian function for the system is an extremum.

Equivalence of Lagrange’s and Newton’s Equations:

We shall show that Newton’s formulation is equivalent to the Lagrangian

formulation by obtaining Newton’s law of motion from Lagrange’s equation and Hamilton's
principle from Newton’s equation.

1. Newton’s equation of motion from Lagrange’s equation:

The Lagrangian equation of motion for a single particle in rectangular coordinates X; IS
d ;0L dL
dt (@j:t-)

— = (0,wherei =1,2,3 mn ke 4]
ﬁ'xi

But: I, =T —V

“ﬁ
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Ty _ A1) _ @55)

' dr[ 0x;
For conservative system, kinetic energy is a function of velocity x,, and potential
energy is a function of potential x; only.

dX;

aT aVv B
(}—II: =0 and -{E = () .. (3.56)
Hence, equation (3.56) becomes,
d /0T aV
dt (6)’:{) ax; =
o aT):—EK- 3.57)
- de \ox, ax; e
For a conservative system, we have
v .,
.__a_xi. =F, k)
Also,
d /9T 3
dt (axﬁ) dt 0%, (2 ' )
d (0T ¢ d
NPT (ax,-) ) = e
d (aT ‘
" dc(a;ﬁ-) - P ##49:54)
Using equations (3.58) & (3.59) in (3.54), we get
F; = p, . (3.60)

This is Newton's equation of motion. Hence, Lagrangian and Newtonian equations are
equivalent.

2. Hamilton’s Principle from Newton’s Equation:

Consider a case of a single particle. Let x;(t),i = 1,2,3 or 7(t) be the solution of
Newton’s equation.

Let ¥, (t,) and 7, (t;) be the position vectors representing the position of the particle at
instants t; and t,.

Then, Newton's equations and the equations of the constraints are at every point along
the path of the particle.

Consider another path having the same end points and travelled in the same interval of
the time (¢, — t;). Then such a path would be represented by

r(t) = 7(t) + 67(t) .. (3.61)
Since the end points are the same for both the paths.
& Oty =07t) = 0 2 (6L
Newton’s equation of motion is
F =mad = mf ..(3.63)
Let W be the work done in passing from the true path to the varied path.
~6W = F - 87
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~ 6W = mft - 87 .. (3.64)
The total force Facting on the particle is the vector sum of the applied force F:‘i and the

force of constraints F..

t F=F +F ..(3.65)
The varied path considered above is such that no work is done by the force of constraint.
ﬁ::: 07r =10 .. (3.66)

Therefore, equation (3.64) becomes
SW =F, - 67 ..(3.67)

If the applied force F}l is a conservative force and hence is derivable from a potential energy
function V, then

E -87 = =6V ~...(3.68)
Hence, equation (3.64) becomes
—8V = m# -+ 67 ..(3.69)
Now consider,
d ¥ s 'y d 5 = . — -
(—E(r-ﬁr‘) = r*E(ér) + ¥ 07 i (i, 70
d

o 1
57 = (7 67) = 8 (50?) . (3.71)
Multiplying throughout by m, we get
= d = i
mi 61 =m—(r- &7 —&(—mvz)
g 7 0R) =83
Using equation (3.69) in above relation, we have

5V = l5"(* S57) — 68T
-—m-d—tv r-or)—

B oo . :
& 8T =8V = m EE[?’* - §1) . (3.72)

Now integrating between the time t, and (;,

= t-}'_'

2
A= “
jﬁ(T—V) dr:mj%(f‘-ﬁf)dt:mfd(f"-ﬂf)
L1

!'.]_ El

1

4
Z i ) tz
Jﬁ(T—V) dt = m[flﬁr]r
1

But, §7 = 0 at the end points, we get

_—“
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) f L dt = . (3.73)

Which is Hamilton’s principal.

Advantages of the Lagrangian Formulation — Elecromechanical Analogies:

1. Hamilton’s principle contains all the mechanics of the holonomic conservative
system. The principle involves to set up the Lagrangian by finding the kinetic energy
and potential energy using suitable generalised coordinates. The. Lagrangian
formulation is invariant with respect to the choice of the coordinate system.

2. The Lagrangian formulation is not restricted to the mechanical system only. It
includes non-mechanical systems such as elastic field, electromagnetic field,
acoustical systems etc.

~ llustration:

1. L-C-R series connection:

Let us consider an electrical circuit containing an inductance L, resistance R, and

capacitance C connected in series as shown in fig.(3.4)

L R
—— BTN — AN |

(a)  E(t
Fig.3.4
The voltage U across each element is
= ol dl
U dt
U=RIT ¢ .. (3.74)
1
= EJ / df)

The external electromotive force E(t) is the sum of voltage across each elements of the

circuit. Thus we have,

Ld!+RI+1JIdt—E(E) (3.75)
dt C - -
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d . .
But, I = d—f, where g is the charge. Hence, above equation becomes

d*q  dq g ..
— + R— — = E(t 576)
L g tr= 8 (
This equation is similar to the equation for the forced oscillator which is given by
d*x dx
= — i al3Fe
m—— + 2mu o+ kx F(t) (3.77)

From above equations (3.76) & (3.77), we havelnductance Lcorresponds to inertial
‘ It
mass m , Ohmic resistanceR correspond to dissipative constants u and capacitance — 10

force constant k. The charge gplays the role of coordinate x and e.m.f. £(t) of the external
force F(t).

Now comparing equations (3.76) and (3.77), we get

l - "
L = R, R = 2mu, Ez k, g=x and E(t)=F() ..(3.78)

With these comparisons, we can write

Kinetic energy 1T = Emvz - ELG'E
q°
. e P o X )
Potential energy V = > kx Ta | .. (3.79)
1
Dissipation function F = mux* = ERC'}'Z
Generalised force Q(t) = E(t) )
The Lagrangian L =T =V
Hence for series connection, the Lagrangian is given by
1 q°
= _1.G% — .. (3.80
L T e

2. L-C-R parallel connection:

Now, consider a circuit contains L, R and C in parallel with e.m.f. £(t) as shown in
Fig.(3.5)

glt)

(b)
Fig:3.5
In this case, the potential difference across each element is the same, but the
current flowing through R, L and C add to give the total current.

The current through R is % , through L is %f U dt and through C is C %.

UL Cdu_f_) e

e e s i T el e e e N e et U i | et kel T e e e . ¥ W e D e . T 2 e —
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Differentiate above equation with respect to time, we get

Cd2U+1dU+U*dI gl
dt?2 " Rdt L dt ir (2¢)

This equation is similar to the equation for the forced oscillator which is given by

O Pp—— 3.83
M — e - R e e
n 173 m Tt + Kkx ( )
Now comparing equations (3.82) and (3.83), we get
1 1 dl
x = U, m=~C, 2mu=—, k=- F(t) =— . (3.84
C, 2mu 5 7 and (t) 7 (3.84)
With these comparisons, we can write
L 1 I
Kinetic energy T = Emuz = ECUE
_ ] i
Potential energy V = —kx° = —
2 2*’*1 > .. (3.85)
Dissipation function F = mux* = ﬁﬂz
_ dl
.Generalised force Q(t) = = |
The Lagrangian L =T =V
Hence for parallel connection, the Lagrangian is given by
L= 1 CL* L 3.86
— 2 28 «3:66)

Lagrange’s Undetermined Multipliers:
What is necessity of undetermined multipliers?

In the constrained motion of the physical system, the degrees of freedom are
reduced. We use the equation of constraint to eliminate the dependent variables and set a
new independent variables. Sometimes it is difficult or inconvenient to eliminate the
dependent variables. Under these circumstances, use of Lagrange’s multipliers gives an
alternative technique to solve the problem.

Consider a function f = f(x,v,z) of three independent variables, The function f
has an extremum value when

adf =0 i L 387)
df df df
-*df—ngdx +Edy+ad2 .. (3.88)
The necessary and sufficient condition to satisfied equation (3.87) is
af df df
—_— = — ~— " C
g% By B2 0 [ 3.89)
Let the equation of constraint be
glx,y,z) =0 ..(3.90)

dg dg dg
L dg = = dx +Edy+55dz ..(3.88)

Lk i e I o —— e T T
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Because of the equation of constraint (3.90), now independent variables are two, say
x and y.

Now multiplying equation (3.88) by A and add in equation (3.88), we get
. af . 0g af .04 af .04
_ (Y, ;%9 9 ,:L—)d +(—+}L—)d =0 ..(3.89
af g (8x+ldx)dx+(ﬁy+ dy Y " \az 0z o ( )
The multiplier A can be chosen by setting

4 A== .. (3.90)

d
Where, we assume that ﬁ * (.

Using equation (3.90) in (3.89), we have
af dg df Jdg
—+A—]d +(.— ﬂ.-—-)f ={) ool
(c'}x Adx) g dy+ dy 4 . ( )
Since x and y are independent, their coefficients must vanish separately.
Hence,

0 J

a—imﬁgzcﬂ

of . Aag - > (3.92)
oy 9y

Thus, when equation (3.90) & (3.92) are satisfied, we get df =0 or f has an
extremum value.

We have now four variables x,y,z, and A, and three equations (3.90) & (3.92). The
forth equation is actually the equation of constraint.

In the solution, we want to know only x,y and z. The multiplier A need not to be
determined. For this reason, it is called Lagrange’s undetermined multiplier.

ILLUSTRATION:

Consider a quantum mechanical problem of a particle of mass m in a box. It is in the
form of rectangular parallelepiped of sides x, y and z.

The ground state energy of a particle in the box is given by

E—h2(1+1+1) (3.93)
C 8m\x?  y?  z? R

We want to find out the shape of the box which will give minimum energy with the
condition that the volume must be constant.

~“Vx,y,z)=xyz=¢ . (3.94)
Here f = F and the equation of constraint is
gx,v,z) =xyz—c=0 e Aot )
Using equations (3.90) & (3.92), we have
JOE J h*
a-i-lé}-: S + Ayz = 0 ..(3.96)
doE dg h*
5‘;4" ﬂ.a = —4?’?’1}’3 + Axz =0 ..(3.97)
dE dg h*
P + AE Ty + Axy = 0 = (398

A e I U b S e . i W e e R e it A e e s S o e AL R e LSBT, T
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Multiplying equation (3.96) by x, (3.97) by v and (3.98) by z , we get

i Ax 0
TRy + AXYZ =
hE
Axyz = e (3.99
el 4mx? ( )
Similarly,
: h}l
pl = ; ol 31400
i 4my? ( :
A = - (3.101)
= emz? T
From above equations, we have
h* h? h* -
AxXyz = = = * w3202

4mx?  4my? 4mz?
Hence the condition for minimum energy is
xX=y=2 w1 03)
Hence box should be a cube. Here, the multiplier A is undetermined.

Lagrange’s Equations for Non-Holonomic Systems:

Let us consider the equation of constraints

Z auday + agdt = 0 . (3.104)
Ik
HeTe. Lt = 1.2, m0h

Above equation represents the m relations of constraints between the differential’s of ' g,
Since the Hamilton’s principle does not involve variation in time, the virtual
displacement must satisfy the equation

Zﬂ;kqu =) (3105)

K
Here,l:=1.2.......xm

Above equation can be used to reduce the number of virtual displacement. For this
we use method of Lagrange’s undetermined multipliers

. A z A oq, =0 i (i d06)
.k
The m equations expressed as equation (3.106) are now combined with
[>

JZ({‘“’ i aL)a _ft*D 3.107)
dg,  dtag,) |t T - 3

ty L K

for the conservative system.
For this, we sum up equation (3.106) over [ and then integrate from t, to t,.

)

a's f Z A.! ﬂikﬁ*?k df =[] (3108)
ki

Ly
Adding equations (3.107) & (3.108)
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b

. .
dL. d dL
R T A oqg.ldt =10 +.(3.109
j Z(qu dt 94, Z ‘a“f) T (3.109)
t, Lk=1 [ :
We may choose A such that
dL. d dL
dq,  dtogy :
where, k=n-m-=1),(n—m), ......... n
If this is true, we must write equation (3.109) as,
Lz rn—m ;
f Z LR +ZA dt =0 (3.111)
I a e . B i .
0q,  dt g, o
£, Lk=1 [ |
Above equation involve those g, that are independent.
Above equation satisfied only if
dL d dL
— i et ) = () ol did
Iq.  dtag, Z ik (ke
whete, &= 1.2, o (E=M)

Combining equations (3.110) & (3.112), we get complete set of Lagrange’s equations for
non-holonomic systems.

d dL  JdL
- = A a aik 3113
dt 9q, g, Z | Aik ( )
where, k=12,........1N
Now, equation (3.104) can be written as
Z Aqr + e =0 . (3.114)
K
where,: 1= 1,2;0 a0

To understand the physical significance of ‘A" ,consider a system on which an
external force (0, acts instead of the constraints. Hence we can write

d dL. odL _ o (3.115)
eI ,{
These equations must be identical with equation (3.113).
Hence,
Z}LI I:I”{ - Q:{ (3116)
:

Thus, ¥, A, a;, can be treated as generalised force of constraints.
Now, an equation of the non-holonomic constraint is

f(q1, Q350 ovis: Q) = 0
: of dq, + o dt =0 (3.117)
& : 3a, i ot = -3
Comparing equation (3.117) with equation (3.104), we get
of of |
o d == .. (3.118
ik dqy o ST B ( )
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Hence, Lagrangian method of undetermined multiplier can be used for holonomic
constraints if

(1) It is inconvenient to reduce all the coordinates of the system to independent

(2) The force of constraints are required

Applications of the Lagrangian method of undetermined multipliers:

(a) Cylinder Rolling on Inclined Plane:

Consider a cylinder rolling without slipping on an inclined plane as shown in Fig.(3.6). We
wish to find the acceleration of the cylinder and the frictional force of constraint.

O

M

Fig.:3.6
Let ¢ be the angle of inclination of the given plane of length [ with the horizontal. Let
the cylinder of radius r start from the point O and roll down the plane along the line of

greatest slope without slipping. Then, the equation of constraint is

rdf = dx
rdf —dx =0 ..(3.119)
We know the equation of constraint as,
Z aydq, + a,dt =0 . (3.120)
K
In this case, there are two variables & and x . Hence, we can write
agdf + a,dx =0 o (3.121)
Now, compare equations (3.119) & (3.121), we have
Qg =T and a, = —1 i Lol )
The kinetic energy of cylinder is
T= = mi? 4 = 162
= me E
But, the moment of inertia of the cylinder is
1
] e i
> m?

Hence,
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1 1 ,

T'= -Z-armi:2 4 Em-r?el’ ..(3.123)
The potential energy is
V = mgh = mg(l — x)sing ... (3.124)
Hence, the Lagrangian is given by
1 . :
L=T—V:§mx"'+1mr292—mg(£—x)sin¢n ...(3.125)

The Lagrangian equations in terms of x and 6 are,
d (dL dL d /0L dL
(—)——= A, and ( )-——= agA

dt\ax/ odx dt\gg/ 06
d(‘)[ (=1)sing] A d d(l EQ)U A
o — — ] — -_ — —_— = — —T
- mx mg sing an 73 mr
 m¥ —mgsing +4 =20 .. (3.126)
And,
1 i
Emrzﬂ —rA=0 0 (3127
Now, equation (3.119) becomes
rg—x=0
Using equation (3.128) in (3.127), we have
1 5
—mrf =4
> r
Y A
L TR
> X
mx
s A — T - (3129)
Substituting this value of A in equation (3.126), we get
mx
mi — mgsing + - = 0
3. |
v omE = mgsing
2gsin
B - ¢ .(3.130)
Using equation (3.128) in (3.130), we get
., 2gsing
- 9 —
’ 3
. 2gsin
. = 29Sne .(3.131)
3r
The frictional force of constraint A is given by
m¥ m?2gsing mgsing
A =—= — B e 5 I 74
2 2 3 3 ( )
We can write,
dv 2gsing
X = —_— =
Y dx 3

Integrating above equation, we get

—__—_————_—__-——_-—_-_—‘____
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4glst
i |2 . (3.133)
|3

This is the velocity at the bottom of the inclined plane.

(b) Simple Pendulum:

Let (r, 6)be the coordinates of the bob of the pendulum with respect to the point O of
the support as shown in Fig.(3.7).

/44%{47//@

}...-
| @
l
I
l
| !
|
I
P
|
' \
l
I (r,0)
|
!
Fig: 3.7
The Lagrangian of simple pendulum is given by
1 1 .
L=T-=V =-§mr"2 +§?nr292+mgr cos 6 ..(3.134)
The equation of constraint is
r=I1i=0
sdr=0 i (3:135)
We know the equation of constraint as,
Za”,_,r;iqk + a,dt =0 wa136)
k
In this case, we can write
a,dr + agdf = 0 . (3.137)
Now; compare equations (3.135) & (3.137), we have
@y =1 and ag =0 .+ (3.188)
Lagrange’s equations in terms of r and 6 are expressed as,
d (@L) aL ,
dt\ar) " ar 7
d .
a(mf*) —mr@* —mgcosf = A
w mi—mr? —mgcosf = A ..(3.139)

T e e o e e e e e — e e e, e e e =m0

Dr P M PATEL, V.P, & R.P.T.P.SCIENCE COLLEGE, VALLABH VIDYANAGAR Page 21




Similarly,

d (SL) aL

dt\ag/ a6
d :

a(mrzﬂ) +mgr sin@ =0

ﬂgﬂ.

© mr26 + mgr sinf =0 ..(3.140)
This is required equation of motion of simple pendulum.

(c) Particle on Sphere:

Let us consider a particle of mass m moving under the action of gravity on the surface of
a smooth sphere of radius (.

We want to find its equation of motion and the angle 6. at which the particle flies off
from the surface. |

Let the origin of the coordinates be the centre of the sphere and let the z- axis be
vertically upwards.
The equation of constraint is given by

r—1=20 ..(3.141)
Where, r is the radial distance of the particle and [ = const.
dr=10 (3.142)
We know the equation of constraint as,
Z audqe + adt =0 i (3.143)
ke
In this case, we can write
a-dr + agdf + agdgp = 0 s (3.144)
Now, compare equations (3.142) & (3.144), we have
a, =1, ag=0 and ay =0 s (3 145)

Let us suppose that the particle is initially at rest and it slide down along the surface. For
convenient, we take ¢ = 0.

The Lagrangian for the particle is
1

B Em(r";3 +1%6%) + mgr cos @ ..(3.146)
The Lagrange's equations of motion are
d (E:?L) oL_
dt\ar) or 7
d .
% o (m7#) —mr@* 4+ mgcosf = A

 mi—mro% + mgcosf = A
But,r = Hencer=7=10

« —mlB? + mg cosf = A ..(3.147)
Also,
d 0L\ 0L
2t (58) ~ 35 = %*

d L
w —(mr46) —mgl sinf =0
dt
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w mrf —mgl sin@ =0
But, r = (
» ml28 —mgl sin@ =0 ..(3.148)
The undetermined multiplier A is dependent on 8.
Now, differentiate equation (3.147) with respectto ' t ', we get

2miff - mgsingd = g
—-2m — mg sin = —
g Si e
2mlf in@ et
N —Lamild—mgsing =—
" I =0
Now, substituting value of 8 from equation (3.148) in above expression, we have
5 E(mgi sin :’i) i aA
m T3 mg sinf = oT:
2mg sin 6 in o g2
& = sinf —mgsinf = —
g g 10
3 inf@ i 3.149
L —=3masinf = — v LD
gsing =— (3.149)
Integrating above equation, we get
A(B) =3mgcosl + ¢ ..(3.150)
From equation (3.147), when 8 = (
A=mg il 151}

This is the force of constraint at the top of the sphere.
Substituting this value of A in equation (3.150) for 8 = 0, we get

c=—2mg
Putting this value of ¢ in equation (3.150), we have
A(0) = 3mg cos O — 2myg ol L VB

The particle will move on the surface as long as the force of constraint is positive.
The condition is

A(B) =3mgcosf —2mg =0 ..(3.152)
This equality is true if
Z
cos B, = 3 il 153)

: |

l.e. at the angle 8, = cos™ " -, the particle flies off the surface. Here, we neglected the

W | B

friction of the surface.

(d) The Schrodinger Wave Equation:

The Lagrangian formulation is an important in modern physics. Consider a quantum
mechanical problem of variation in

5]W'(r)H(r,p)‘P(r)dr = () ..(3.154)

The constraint is that total probability is conserved.
Hence,

J. Y)W (r)dr = 0 vl L )

B e e RS e T e e
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Equation (3.154) states that the energy of a particle described by the wave function ' is
an extremum with the condition given by equation (3.155) that the total probability of

finding the particle in the whole space is unity.

Here, H is the quantum mechanical Hamiltonian operator for a particle of mass m

2

R
H=—-——V+V(r) ..(3.156)
2m

Here, V() is the potential field in which the particle is moving.
The wave function of the particle ¥ and its complex conjugate are treated as

independent variables.
Substituting equation (3.156) in (3.154) and solving by integration by parts, we have

5f {—‘?‘F VY + V! ‘F] dr = .. (3.157)
2m |
Combining equation (3.157) and (3.155) with undetermined multiplier A, we get
SJ {-—‘?'P VY + VY Y — Ay ‘P‘ dr = () ..(3.158)
= —?*P VY 4+ VP @ — APy ..(3.159
“f =5~ (3.159)

Where f is a function of % and ¥'".

Using the Euler-Lagrange equation, we get
2

h
—— VY L V(¥ =AY ... (3.160)
2Zm

Here A is a real constant and represents the energy of the physical quantum mechanical

system.
Thus, the Lagrangian formulation through variational methods is not simply an

hypothetical concept but provide a powerful tool in the study of physical phenomena.

ﬁ
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Question Bank

Multiple choice questions:

(1) The n-dimensional space is called space
(a) solar (b) configuration
(c)real (d) zero

(2) In variational principle the line integral of some function between two end points is

(a) zero (b) infinite
(c) extremum (d) one
(3) The shortest distance between two points in a plane is
(a) circular (b) hyperbolic
(c)parabolic (d) straight line
(4) The path of a particle is when it is moving under constant conservative
force field
(a) cycloid (b) hyperbolic
(c)parabolic (d) straight line
(5) The equation of constraints is for a cylinder rolling on inclined plane
(@) rdd—dx =0 (b)rdf —dx =0
(c)rdr —dx =20 (dyrdx —dx =10
(6) The equation of constraints for a simple pendulum is
(a)rdd —1=0 (b)r+1(=0
(c)rd8+1 =10 (d)r —=I{=0
(7) The angle of flies off for a particle moving on spherical surface is
(@) ¢ = cos™* () (b) ¢ = sin™*(3)
(¢) p¢ = cos™ (3) (d) ¢ = sin~" (3)

Short Questions:

1. What is configuration space?

2. State the variational principle

3. Define geodesic line

4. Write the equation of cycloid when a particle is moving in a constant conservative
force field

5. State the Hamilton’s principle

6. Show that the Lagrangian and Newtonian equation are equivalent

7. What is undetermined multiplier?

8. Write the Lagrangian for a cylinder rolling on inclined plane

9. Write the Lagrangian of simple pendulum in terms of spherical polar coordinates

10. Write the Hamilton’s equation of motion

Long Questions:

Describe the configuration space

Discuss the technique of calculus of variation and derive the general Euler’s equation

Derive the Euler's equation using 6- notation

To show that the shortest distance between two points in a plane is a straight line

Discuss the shortest time problem for a motion of a particle in a constant

conservative force field

6. Show that the extremum value of the distance between the two points on the
surface of a sphere is an arc of a circle whose centre lies at the centre of the sphere

7. State the Hamilton’s principle and derive the Lagrange’s equation of motion
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8. Derive the Hamilton’s principle from Newtonian formulation

9. Construct the Lagrangian for series and parallel connection of inductance L,
resistance R and capacitor C with an external electromotive force (t)

10. Describe the Lagrange’s undetermined multiplier with illustration

11. Derive the Lagrange’s equation of motion for Non-holonomic system

12. Construct the Lagrangian and derive the equations of motion for a cylinder rolling on
inclined plane using undetermined multiplier

13. Derive the equation of motion for a simple pendulum using undetermined multiplier

14. Construct the Lagrangian for motion of a particle on a sphere and derive the
equations of motion using undetermined multiplier

15. Derive the Schrodinger wave equation using variational principle

16. Derive the Hamilton’s equation of motion
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